PRODUCTS VIDEO

Flux Smelting DC Electric Arc Horna
Estado de movimiento electromagnético y movimiento fundido
Gold Mine Smelting DC Sumerged Arc Horno
Remel de acero inoxidable DC ELECTRIC ARCHA DE ARCO
Fuera de arco eléctrico DC de indio de metal raro
Línea de producción de aluminio con núcleo de acero
x

WHY CHOOSE US?

Ahorro de energía | Establo | CONFIABLE

  • Conservación de energía

    Ahorrar 15% de electricidad
  • Alta eficiencia

    Mayor producción
  • Automatización

    Alto grado de automatización
  • Safty

    Alto factor de seguridad
  • Ganancia

    Alta tasa de retorno

PARTNER

Uniting expertise for exceptional bending solutions

Zirconia Corundum Smelting DC Arco de arco eléctrico
Horno de arco sumergido de DC de resonancia roja de barro
Aluminato de calcio Smithting DC Electric Arc Horna
Beryllium aleación de cobre fundido DC Elemento de arco eléctrico

Acerca de Youngde

Horno de arco eléctrico de DC, horno de arco sumergido de DC

10 + Years
Dedicated to the development and production of bending machine for more than 10 years
30 + R&D
R&D patent certificate
30 + People
Professional technicians
20 + Teams
Professional R&D Team
50 + Client
Customized Solution Customers

NOTICIAS

Compartir conocimiento en hornos de arco de CC, hornos de arco sumergido de DC y procesos de fundición.

VER MÁS +
Características del horno de arco eléctrico de doble electrodo DC/ horno de arco sumergido
Características del equipo : 1. El consumo de energía es 10% ~ 15% menos que el del horno de CA. 2. El consumo de electrodo de grafito es 40% menor que el del horno de CA. 3. En comparación con el horno de CA, elimina la inversión del dispositivo de compensación de potencia reactiva. 4. Control automático del PLC, el ritmo de producción es estable y confiable. 5. En el proceso de fundición, de acuerdo con los requisitos del proceso, sin apagado, la corriente permanece sin cambios, el nivel de voltaje aumenta o disminuye a voluntad, y luego la longitud del arco cambia a voluntad, para realizar el arco abierto y las funciones de arco sumergido . También puede ajustar el voltaje y la potencia arbitrariamente. 6. El electrodo puede cambiar su polaridad a voluntad en el proceso de fundición, lo que acorta en gran medida el tiempo de fundición. 7. Porque el efecto térmico grave del ánodo inferior, la parte inferior del horno de DC de electrodo único es fácil de quemar. El horno de doble electrodo DC no tiene un efecto de ánodo inferior, lo que resuelve completamente el problema . 8. La placa de control principal de la fuente de alimentación de CC tiene la función del aislamiento fotoeléctrico, que puede evitar efectivamente el campo magnético fuerte en el sitio de producción para interferir con la estabilidad del circuito de control en el proceso de producción. La placa también tiene las funciones de sobrevoltaje, sobrecorriente y protección de alta temperatura, lo que puede evitar efectivamente el daño causado por el cortocircuito al equipo. 9. Equipo de fusión de plasma DC La temperatura central de electrodos es alta, la concentración de calor, el electrodo enterrado fácil a profundo, el fondo del horno no es fácil de aumentar, más adecuado para la fundición de productos de alto punto de fusión. 10. En el proceso de fundición, los iones metálicos en la fusión se concentrarán alrededor del electrodo negativo debido a la electrólisis, a fin de mejorar el rendimiento y la pureza de los productos, que es más propicio para el enriquecimiento de metales preciosos y otros metales de alto valor . 11. La dirección de corriente y el campo electromagnético del horno DC permanecen sin cambios. Impulsado por el campo magnético, la lechada fundida circula en una dirección todo el tiempo, formando agitación electromagnética, de modo que el material se derrite sin esquinas muertas, la calidad del producto es alta y el rendimiento es alto. Sin embargo, la dirección actual del horno de CA cambia 50 veces por segundo, y la dirección del campo magnético es caótica, lo que hace que sea imposible darse cuenta de la función de agitación electromagnética. 12. El nivel de ruido es 10 ~ 20 D B más bajo que el horno de CA. 13. El consumo de electrodos de grafito del horno de CC es 40% más bajo que el del horno de CA. 14. El refractario de la pared del horno tiene una larga vida útil. El ángulo entre la luz de arco y el electrodo de grafito del horno de CA es de 45 ° y es fácil golpear la pared del horno, dañando así el refractario de la pared del horno. El ángulo entre la luz de arco y el electrodo de grafito del horno de CC es de 30 ° y no es fácil golpear la pared del horno. 15. Cuando ocurre un accidente en el proceso de fundición y se produce una falla de energía durante un período de tiempo, se formará una cubierta dura aislante en la superficie del líquido fundido. Si el horno de DC de electrodo único encuentra esta situación, el equipo no puede continuar fundiendo, por lo que solo puede desmantelarse. Enfrentando esta situación, el horno de doble electrodo DC puede comenzar a fundir arco nuevamente agregando materiales llamativos de arco como Coca -Cola en la parte inferior del electrodo.
  • 02
    2024-03
    Perfil de la empresa
    Anyang Younengde Electric Co . Nuestra compañía ha obtenido 35 nuevas patentes técnicas prácticas sobre el equipo de fusión de plasma DC. La capacidad del equipo es de 50kVA a 30000KVA. El proceso de extracción y enriquecimiento de metales raros y preciosos del mineral crudo, el catalizador y los desechos sólidos industriales maduran con alto rendimiento. El rendimiento de silicio metálico y 75 # ferrosilicon es alto en la fundición de sílice. La tasa de recuperación de los metales no ferrosos es alta cuando las placas de circuito de residuos se derriten directamente. El proceso de fundición de aluminamiento de calcio es maduro. Nuestra compañía ha llevado a cabo cooperación profesional e intercambios técnicos con muchas empresas y unidades en el hogar y en el extranjero, y suministró productos de alta calidad. Lista de casos de productos Instituto de Mecánica de la Academia de Ciencias de China (cooperación del servicio técnico) Instituto de Diseño e Investigación de Suzhou (Cooperación de Servicios Técnicos) Anyang Longxin Silicon Industry Co., Ltd (Mentón de DC Remel de Remel Polvo M Etallic) Hubei Boxin New Materials Technology Co., Ltd (horno DC de fundición de silicio metálico) Danjiangkou Huiyuan Hejin Co., Ltd (Silicón Metálico Smelting DC Hornace) Instituto de Investigación Central de Iron & Steel de Beijing ( horno de acero) Dalian Wilte Steel Co., Ltd (horno DC experimental de hierro de titanio de vanadio) Henan Liyuan Group Co., Ltd (horno de Ferroalloy) Wu'an Yuhua Steel Group Co., Ltd (horno DC de aleación de aluminio de acero) Tangshan Ganglu Steel Group Co., Ltd (horno de aleación de aluminio de acero) DC ) Heil Ongjiang Jianghui Huanbao Technology Co., Ltd ( Ferronickel Alloy DC Furnace) Guangdong Guangqing Jinshu Technology Co., Ltd ( Ferronickel Alloy DC Furnace) Henan Jiaozuo Sr. Zuo ( Murno DC de Function Multi) Rizhao Zhenghong Yanchuang New Materials Co., Ltd (Ferronickel Alloy DC Furnace) Fujian Anxi Ansheng Mining Co., Ltd (Murno DC de Function M ) Liaoyangshi Taiziheque Boyi Zhuzaochang (Waste Zinc Slag DC Horna) Chongqing Saiyadi Energy Technology Co., Ltd (horno de DC Red Mud Ironmaking) Liaoning Fuyun Refractary Co., Ltd (horno de DC de aluminamiento de calcio ) Huolinguole Gerun Huanbao Technology Co., Ltd (horno DC de aluminamiento de calcio ) Huolinguole Lifenglvye Co., Ltd ( horno DC de aluminamiento de calcio ) Dalian Yishun Lvse Technology Co., Ltd (horno DC de aluminato de calcio ) Danjiangkoushi Wanji Abrasive Materials Co., Ltd (Corundum DC Furnace ) Jiangsu Nantong Taiyang Technology Co., Ltd (horno de aleación de cobre de Beryllium ) DC ) Jiangsu Nantong Taiyang Technology Co., Ltd (horno de aleación de cobre de Beryllium ) DC ) Indonesia PT Metalindo Makmur Mandiri (Test DC Furnace) Corea HF Metal Trade Co., Ltd (PCB DC Hornace) Guangdong Meizhou Mr. Fu (horno de PCB DC) Guizhou Yixiang Kuangye (Grupo) Zhenyuan Runda Co., Ltd (Horno de DC de metales preciosos) Guangxi Zhongwu Kuangye Co., Ltd (PRECIOSO METALS DC HUNTACE) Longyan Changyu New Material Technology Co., Ltd (PRECIOSO METALS DC HUNTACE) Hubei Huanggang Sr. Zhao (Horno DC de metales preciosos) Henan Yihui Jinshu Technology Co., Ltd ( horno de DC Catalytic Smelting de tres vías ) Shanghai Yudun Xincailiao Technology Co., Ltd (horno de DC Catalytic Smelting de tres vías ) Zhejiang Qike Shengwu Technology Co., Ltd (horno de DC Catalytic Smelting de tres vías ) Instituto de Investigación Metalúrgica de Zhejiang (horno de DC Catalytic DC de tres vías ) Hubei Zhongyuan Chucheng Environmental Protection Technology Co., Ltd (horno de tres vías catalíticas DC ) Huaian Zhongshun Environmental Protection Technology Co., Ltd (dos conjuntos de horno de DC catalítico de tres vías ) M Inshan Huanneng Hi-Tech Gufen Co., Ltd (Test de orejas de zinc principales DC Hornace) Zhejiang Teli Renewable Resources Co., Ltd (horno DC de recuperación de lodos de cobre) Keyuan Environmental Equipment Co., Ltd ( El horno DC de eliminación de desechos peligrosos ) Estación de incineración de desechos de Guanyinshan ( El horno DC de la eliminación inofensiva de cenizas ) Chaozhou Dongsheng Environmental Protection Technology Co., Ltd ( horno de DC de lana R oCk ) Yongxing Ch Ang Long Environmental Protection Technology Co., Ltd (hojas de escoria de estaño y reciclaje DC Hornace) Kunming Dingbang Technology Co., Ltd ( horno de tinty smelting DC)
The contribution of DC arc furnace in reducing emissions and improving resource utilization efficiency
The contribution of DC arc furnaces in reducing emissions and improving resource utilization! DC arc furnaces do have certain advantages in environmental protection and resource utilization in industrial production, mainly reflected in the following aspects: High energy utilization efficiency: DC arc furnaces have improved energy utilization compared to traditional AC arc furnaces. DC arc furnace can better control the transportation and penetration depth of arc energy, thereby reducing energy waste and improving energy utilization efficiency in the smelting and smelting process. Reducing carbon emissions: DC arc furnaces usually have better control over temperature and reaction processes during operation, which helps to reduce the generation of carbon oxides and thus reduce carbon emissions. Compared to traditional smelting methods, DC arc furnaces can handle waste and waste more environmentally friendly, reducing carbon dioxide emissions. Recycling of waste and waste materials: DC electric arc furnaces can not only be used for metal smelting, but also for processing waste metals and waste materials. Through this approach, it contributes to the recycling and utilization of resources, reduces reliance on and exploitation of natural resources, and thus reduces the burden on the environment. Alloy control and product quality: DC arc furnace can better control the composition of alloys and product quality, which to some extent reduces waste in the production process and improves product utilization. In summary, DC arc furnaces have shown significant advantages in reducing energy waste, reducing carbon emissions, and promoting resource recovery and utilization, which helps to improve the environmental protection and sustainability of industrial production.
  • 28
    2024-06
    The process and principle of electric furnace smelting high carbon ferrochrome
    The smelting methods of high carbon ferrochrome include blast furnace method, electric furnace method, plasma furnace method, melt reduction method, etc. Only special pig iron containing about 30% chromium can be produced in the blast furnace; The plasma furnace method and melt reduction method are new processes for smelting high carbon ferrochrome and have not yet been widely adopted. At present, high carbon chromium iron with high chromium content is mostly smelted in a submerged arc furnace using the flux method. 1、 The basic principle of electric furnace smelting The basic principle of electric furnace smelting high carbon ferrochrome is to reduce chromium and iron oxides in chromium ore with carbon. From the above reactions, it can be seen that the starting temperature for carbon reduction of chromium oxide to produce Cr3C2 is 1373K, the starting temperature for the reaction to produce Cr7C3 is 1403K, and the starting temperature for the reaction to reduce to produce chromium is 1523K. Therefore, during carbon reduction of chromium ore, chromium carbides are obtained, rather than metallic chromium. Therefore, only high carbon chromium iron with high carbon content can be obtained. Moreover, the carbon content in ferrochrome depends on the reaction temperature. It is easier to generate carbides with high carbon content than carbides with low carbon content. In actual production, during the heating process, some chromium ore reacts with coke to form Cr3C2. As the temperature of the furnace material increases, most of the chromium ore reacts with coke to form Cr7C3. The temperature further increases, and chromium trioxide plays a refining and decarbonization role on the alloy. The starting temperature of the reduction reaction of iron oxide is lower than that of the reduction reaction of chromium trioxide. Therefore, the iron oxide in the chromium ore is fully reduced at a lower temperature and dissolves with chromium carbide, forming composite carbides and reducing the melting point of the alloy. Meanwhile, due to the mutual dissolution of chromium and iron, the reduction reaction is easier to carry out. 2、 Smelting process operation of high carbon ferrochrome The production of high carbon ferrochrome using electric furnace flux method adopts a continuous operation method. The raw materials are batched in the order of coke, silica, and chromium ore to facilitate uniform mixing. The open furnace adds the material around the electrode through the feeding groove, and the material surface forms a large cone. The closed furnace directly adds materials into the furnace through the discharge pipe. Whether it is an open furnace or a closed furnace, new materials should be added in a timely manner as the furnace material sinks to maintain a certain level of material height. When the furnace condition is normal, the three-phase current is balanced, the electrodes are stable, the ventilation is good, there is no burning, and the furnace material can sink evenly; The temperature of slag and iron is normal, the composition of alloy and slag is stable, and can be smoothly discharged from the furnace; The furnace pressure of a fully enclosed furnace is stable, and the amount and composition of furnace gas do not change much. There is no explosion in the material tube when the raw materials are dry. The number of iron tapping is determined by the capacity of the electric furnace, and iron and slag are simultaneously discharged from the tapping port. In the later stage of iron production and when slag production is not smooth, round steel should be used to clear the furnace hole to help with slag discharge. Determine the depth of blockage based on the degree of erosion of the furnace lining. Carbon brick lining is blocked with refractory clay balls, while magnesium brick lining is blocked with a certain proportion of magnesium sand powder and refractory clay balls. The characteristics of abnormal furnace conditions are: 1. When the amount of reducing agent is insufficient, the electrode is inserted deeply, the current fluctuates, the load is insufficient, and the electrode is consumed quickly; The flame at the furnace mouth darkens; The alloy has low silicon and carbon content, hard iron, and many skin bubbles. The content of Cr3C2 in the slag increases, and the viscosity of the slag increases. 2. When there is an excess of reducing agent, the electrode is inserted shallowly, the current fluctuates, sparks, slag sprays, and the electrode consumption is slow; The temperature at the bottom of the furnace is low, making it difficult to open the tapping hole and discharge the slag; The content of carbon and silicon in the alloy increases, while the content of Cr3C2 in the slag decreases. 3. When there is too much silica, the electrode is deeply inserted, the flame becomes dark, the fluidity of the slag is good, the content of Cr3C2 in the slag increases, the solidified slag turns black, the furnace wall is severely corroded, the carbon content in the alloy increases, the superheat of the alloy is small, and it is difficult to discharge from the furnace. 4. When there is too little silica, the electrode is inserted shallowly, the furnace temperature is high, and there is thick slag around the electrode, which is easy to flip. The viscosity of the slag is high, making it difficult to release from the furnace. Due to the high furnace temperature, the temperature of the molten iron is high, the carbon content decreases, and the amount of slag and iron is also small. 5. When the amount of silica and coke is insufficient, the content of Cr3C2 in the slag is low, very viscous, containing many unreduced chromite and small metal particles, which are difficult to flow out of the furnace. The content of silicon and carbon in the alloy decreases. 6. When the amount of coke is insufficient and the amount of silica is excessive, the slag temperature is low, easy to melt and viscous, containing a large amount of silicon dioxide, Cr3C2, and iron oxide. The silicon content in the alloy decreases and the carbon content increases; Insertion depth under the electrode increases consumption. 7. When there is an excess of silica and coke, the slag is easily melted, and some coke with hanging slag is discharged from the tapping hole; The silicon and carbon content in the alloy are both high; Unstable insertion of electrodes. 8. When there is excess coke and insufficient silica, the electrode is lifted up, causing a stinging fire, and coke sprays out from the crucible; The melting point of slag is high, the temperature of slag is also high, the content of Cr3C2 in slag is low, the slag is viscous, and it is not easy to release from the furnace. The chromium content in the alloy depends on the chromium iron ratio in the chromium ore and the recovery rate of chromium. The carbon content in alloys is mainly related to the physical properties of chromium ore. When chromium ore has good melting ability and small block size, the feeding rate is fast, the furnace temperature is low, and the carbon content of the alloy is high; On the contrary, if the ore is difficult to melt, has a large block size, slow feeding speed, and high furnace temperature, due to the refining effect of Cr3C2 on chromium carbides in the block ore, the carbon content of the alloy is low. The silicon content in the alloy is mainly related to the amount of reducing agent used, the silicon dioxide content in the slag, and the furnace temperature. If the amount of reducing agent is high, the furnace temperature is high, and the silicon dioxide content in the slag is relatively high, the silicon content in the alloy is also high; On the contrary, the silicon content in the alloy is low. The silicon content of the alloy fluctuates between 0.1% and 5% during production. About 80% of the sulfur in the alloy comes from coke, so to reduce the sulfur content of the alloy, low sulfur coke must be used. In the smelting process of high carbon ferrochrome, the amount of flux directly affects the composition of the slag. Due to the fact that the composition of slag determines its melting point, which in turn determines the temperature inside the furnace, selecting and controlling the composition of slag is an important issue in smelting ferrochrome. The appropriate composition of slag can reach a sufficient temperature inside the furnace, ensuring the smooth progress of reduction reaction and the smooth discharge of reduction products. The melting point of high carbon ferrochrome is over 1773K. In order to ensure a high reaction rate and facilitate the smooth release of the generated alloy from the furnace and separation of slag and iron, the furnace temperature must be controlled above the melting point of ferrochrome at 1923-1973K. Therefore, the melting point of slag should be controlled within this range. Otherwise, if the melting point of the slag is low and the temperature inside the furnace is also low, although the slag can flow out smoothly during the discharge, the molten iron cannot flow smoothly due to the low superheat, resulting in a phenomenon of more slag and less iron, and in severe cases, only slag but not iron will be discharged; If the melting point of slag is too high and the temperature inside the furnace is also high, the slag cannot flow smoothly due to the high melting point and insufficient superheat. However, if the molten iron can flow smoothly, there will be a phenomenon of less slag and more iron, and in severe cases, only iron will be produced without slag. After the reduction of Cr3C2 and FeO in chromite, the remaining main oxides are magnesium oxide and aluminum trioxide. Both of these oxides have high melting points and require the addition of a flux (silica) to lower their melting points before they can flow out of the furnace. Therefore, the amount of flux directly affects the composition of the slag. The amount of silica added is determined based on the aluminum magnesium silicon ternary phase diagram. Due to the ratio of magnesium oxide to aluminum trioxide in the slag being around 1, it is possible to draw a line perpendicular to the bottom through the vertex of silicon dioxide. The points on the line represent the melting point of the slag, which decreases with the increase of silicon dioxide content. When the ratio of magnesium oxide to aluminum trioxide changes, it has little effect on the melting point of the slag, because the isomelting line is basically parallel to the bottom line. When checking the ternary phase diagram, the sum of the contents of silicon dioxide, aluminum trioxide, and magnesium oxide in the slag must be converted to 100%. The content of alumina in slag has an impact on the viscosity of the slag. If the content of alumina in slag is too high, the viscosity of the slag will increase, which is not conducive to slag discharge. But aluminum trioxide can increase the resistivity of the slag, which is beneficial for deep electrode insertion, so a certain amount is required.
  • 28
    2024-06
    Electric arc furnace fabric and power transmission system have doorways
    In the modern large and medium-sized steel casting production enterprises, the electric energy consumption per ton of molten steel in the electric arc furnace is an important energy index. Now we have the experience in the production of 30t electric arc furnace in our company's cast steel business unit, and talk about the relationship between electric arc furnace fabric and power transmission system. The original cloth method of Harbin Electric Machinery Co., Ltd. simply stipulates that the heavy material is added to the bottom and the upper part is light and thin; the power transmission system is for 5~10min for small current and low voltage, and the highest voltage and maximum after the arc is buried in the scrap. The current is sent and melted, and the oxygen is cut in the middle. After the collapse is completed, the reactor is removed, and the three-stage voltage is supplied, and the current is appropriately adjusted according to the smelting condition. After the energy management refinement and upgrading, we found that the same material, the same tonnage of smelting furnaces, different time, different power consumption, statistical analysis found that the same charge, the maximum power transmission, the whole furnace for the steel sheet furnace The average average smelting speed is obviously faster than the average melting speed of most risers plus a small amount of waste steel sheet heat, and the uniform melting rate of the charge is faster than that of the furnace. Most of the charge is a riser, with an average power consumption of 20%. Several comparison tests were conducted for the number of heats that were loaded into large risers. The first group is the highest voltage and maximum current after penetrating the well. The second group is the voltage drop to 2 after the well, the current is reduced by 20%, the melting rate is not significantly different, and the second group of power consumption is reduced by 5% to 10%. . Our analysis believes that the melting rate of the large riser and the edge of the charge is slow, the power supply is too fast and can not be absorbed quickly, local high temperature, large heat dissipation, resulting in increased power consumption. The adjustment measures are as follows: the feeding material is as stable and uniform as possible, so that the charging material, especially the heavy material, is not biased toward the edge of the furnace body; when the material block is too large, the power supply strength is appropriately reduced. In the case where the same tonnage, the same furnace charging method and the power transmission mode have appeared in the test, the smelting time is also similar, but the power consumption varies greatly. The maximum energy consumption is 15%. According to the voltage and current loaded into the electric furnace, we calculate the electric energy input into the electric furnace, and find that the electric energy used for melting is basically similar. The difference is that the working time of the reactor is different, because the reactor consumes a part of electric energy, resulting in an increase in reactive power. , resulting in an increase in electricity consumption per ton of molten steel. After a period of statistics, the energy consumption of the furnace with a long period of time is too large. Through reasonable cloth and oxygen blowing, it is possible to advance the time of leaving the reactor and reduce the power consumption of smelting. The power transmission system of the electric furnace is a main working system used by the electric arc furnace. It should not be static. It should be adjusted according to the specific conditions of the charging materials. The fabric is a basic work and should be strictly according to the smelting characteristics of the electric arc furnace. Prescribe and refine operations.  
  • 07
    2024-05
    Calcium carbide and ferroalloy will limit production
    According to relevant national and regional policies, from now on, the city will restrict the production of calcium carbide and ferroalloy. In order to conscientiously implement the State Council's video and telephone conference on energy conservation and emission reduction work and the “State Council’s Circular on Further Enlarging Work to Ensure the Implementation of the “Eleventh Five-Year Plan” Energy Conservation and Emission Reduction Targets”, the Autonomous Region Government issued the “Inner Mongolia People’s Government’s Implementation Guarantee” a few days ago. After completing the "Eleventh Five-Year Plan" emergency measures for energy saving targets, it was decided to limit the production of calcium carbide and ferroalloy, and the output of calcium carbide and ferroalloy allocated to our city was 1 million tons and 190,000 tons, respectively. In order to ensure the completion of the “Eleventh Five-Year Plan” energy saving target, strictly implement the plan for production distribution of calcium carbide and ferroalloy in the autonomous region, and according to the needs of the energy conservation situation, the city decided to implement restrictions on production or production suspension of calcium carbide and ferroalloys so as to curb the rapid growth of calcium carbide and ferroalloy. . From now on, all ferrosilicon enterprises in the city's ferroalloy industry will stop production, the remaining production will be allocated to ferromanganese, ferrochrome, nickel-iron and other enterprises; calcium carbide will be allocated to calcium carbide as much as possible by quotas, the integrated upstream and downstream PVC group.
  • 06
    2024-05
    Aluminum Industry Technology: Analysing the Characteristics of Vertical Aluminum Alloy Quenching Furnaces
    The vertical aluminum alloy quenching furnace is a cycle-type resistance furnace, which is mainly used for the heating of quenched aluminum alloy parts. The vertical aluminum alloy quenching furnace has the advantages of uniform furnace temperature, rapid temperature rise, short water inlet time, and low energy consumption. The temperature control system of the vertical aluminum alloy quenching furnace adopts PID zero-triggered thyristor, and the structure of the electric furnace consists of bottom bracket, heating furnace body, heating element, hot air circulation system, mobile quenching tank truck, basket lifting mechanism, control system, etc. Partly composed. Brief introduction of vertical aluminum alloy quenching furnace: The vertical aluminum alloy quenching furnace consists of a heating furnace cover and a mobile chassis. The square (or round) furnace hood is equipped with a crane, and the basket can be hoisted to the furnace through chains and hooks. The furnace hood is supported by a profiled steel and the bottom of the oven door is operated pneumatically (or electrically). The base frame below the furnace hood can be moved along the track and positioned. The chassis carries the quenched water tank and basket. Vertical aluminum alloy quenching furnace features: (1) Temperature uniformity of vertical aluminum alloy quenching furnace The temperature uniformity achieved by the user is guaranteed by the associative design of the circulation fan, wind deflector plate, furnace structure, electric power distribution, arrangement of electric heating elements, control method and process, and door structure. (2) Vertical aluminum alloy quenching furnace with advanced mechanical system The advanced nature of the system is ensured by the design, component selection and quality, and processing and manufacturing quality. The mechanical system runs smoothly and reliably, and the equipment is in a state of low noise and low vibration. (3)Vertical aluminum alloy quenching furnace has perfect control system Reflected in 100 - 650 °C can achieve accurate temperature control, the system is stable and reliable, easy to operate, to avoid human error operation, complete functions and so on. (4) Quenching transfer time is rapid and adjustable Bottom-moving furnace door, rapid lifting mechanism, and advanced mechanical system make the quenching transfer fast and reliable. The time can be based on the user's process requirements, quenching speed ≤15S. (5) The quenching tank adopts a mobile trolley, or adopts the form of a pit, so that the workpiece can be processed conveniently and quickly.

CONTÁCTENOS

EMAIL

Online consultation, we will get back to you as soon as possible

* * *
*

HOT PRODUCTS

Ver más

COMPANY CERTIFICATE

ANYANG YOUNENGDE ELECTRIC CO.,LTD

EMAIL : 13949514533@163.com

ADD. : Northwest corner of the intersection of Huaxiang Road and Angang Avenue, Anyang, Henan China

Copyright © 2024 Todos los derechos reservados por ANYANG YOUNENGDE ELECTRIC CO.,LTD. Powered by
We will contact you immediately

Fill in more information so that we can get in touch with you faster

Privacy statement: Your privacy is very important to Us. Our company promises not to disclose your personal information to any external company with out your explicit permission.

Enviar